CHAPTER-5

POTENTI OMETERS \& I nstrument Transformer

10. Ans: (b)

Sol: Measurement of reactance of a coil by using
Polar type ac potentiometer
Given that $\mathrm{I}=12 \angle 13.8^{0}, \mathrm{~V}=27.8 \angle 29.7^{0}$
$\mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}} \angle \theta_{\mathrm{C}}-\theta_{\mathrm{S}}$
Reactance $X=Z \sin \left(\theta_{C}-\theta_{S}\right), \quad$ Where $\theta_{C}=29.7^{0}, \theta_{S}=13.8^{0}$

$$
\begin{aligned}
& \mathrm{Z}=\frac{27.8}{12} \angle 29.7-13.8 \\
& \mathrm{Z}=2.31 \angle 15.9 \Omega
\end{aligned}
$$

Reactance $\mathrm{X}=2.31 \sin (29.7-13.8)$

$$
X=0.632 \Omega
$$

11. Ans: (b)

Sol: The voltage read by potentiometer is 1.2 V
The voltmeter reads 0.6 V with $20,000 \Omega / \mathrm{V}$ on 5 V range
Input resistance $\mathrm{R}_{\mathrm{V}}=\mathrm{S}_{\mathrm{DC}} \times$ voltage
$\mathrm{R}_{\mathrm{V}}=20,000 \times 5$
$\mathrm{R}_{\mathrm{V}}=1,00,000 \Omega$
12. Ans: (a)

Sol: Given that
Working current $\mathrm{I}_{\mathrm{w}}=10 \mathrm{~mA}$
Dial resistor having 15 steps of 10Ω each
i.e. $=150 \Omega$
slide wire resistance is $=10 \Omega$
Total resistance $=150+10=160 \Omega$
Range of voltage $=I_{W} \times R_{\text {total }}$

$$
=10 \times 10^{-3} \times 160=1.6 \mathrm{~V}
$$

Resolution: slide wire provide with 100 divisions and since the total resistance of slide wire (10Ω) corresponding to a voltage drop of $(10 \mathrm{~mA} \times 10 \Omega=0.1 \mathrm{~V})$, each division of slide wire corresponds to $=\frac{0.1}{100}=0.001$
With certainly the reading upto $\frac{1}{5}$ of scale division
Then resolution is $\frac{1}{5} \times 0.001=0.2 \mathrm{mV}$
13. Ans: (a)

Sol: For the voltage division $\left(\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{in}}}\right)$ is independent of frequency, the impedance ratio should also be independent of frequency

$$
\begin{aligned}
\frac{Z_{1}}{Z_{2}} & =\frac{R_{1} \frac{1}{j \omega c_{1}}}{R_{1}+\frac{1}{j \omega C_{1}}} \times \frac{R_{2}+\frac{1}{j \omega c_{2}}}{R_{2} \times \frac{1}{j \omega c_{2}}} \\
& =\frac{R_{1}}{1+j \omega c_{1} R_{1}} \times \frac{1+j \omega c_{2} R_{2}}{R_{2}} \\
& =\frac{R_{1}}{R_{2}} \cdot \frac{1+j \omega c_{2} R_{2}}{1+j \omega c_{1} R_{1}} \Rightarrow C_{2} R_{2}=C_{1} R_{1} \\
C_{1} & =\frac{C_{1} R_{1}}{R_{2}}=\frac{1 \times 10^{-6} \times 10}{1 \times 10^{3}}=10 \mu F
\end{aligned}
$$

15. Ans: (a)

Sol: Given that,
Working battery is 3 V
Slide wire is 400Ω
Length L $=200 \mathrm{~cm}$
Let $1 \mathrm{~cm}=2 \Omega$
Standard cell voltage is 1.018 V
Sliding contact at 101.8 cm
Sliding contact resistance $=2 \times 101.8=203.6 \Omega$
Current through the slide wire is

$1.018 \mathrm{~V}=\mathrm{I}_{\mathrm{W}} \times 203.6$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{W}}=5 \times 10^{-3} \\
& \mathrm{I}_{\mathrm{W}}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{h}}+400} \Rightarrow \mathrm{R}_{\mathrm{h}}+400=\frac{3}{5 \times 10^{-3}}=600 \\
& \mathrm{R}_{\mathrm{h}}=600-400=200 \Omega
\end{aligned}
$$

16. Ans: (a)

Sol: \quad Resistance of unknown resistor $\mathrm{R}=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{V}_{\mathrm{S}}} . \mathrm{S}=\frac{0.4221}{1.0235} \times 0.1=0.041208 \Omega$

$$
\text { Current through the resistor }=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{~S}}=\frac{1.0235}{0.1} \quad=10.235 \mathrm{~A}
$$

Power loss in unknown resistance $=\mathrm{I}^{2} \mathrm{R}=(10.235)^{2} \times 0.041208=4.316 \mathrm{~W}$
17. Ans: (b)

Sol: \quad Voltage drop per unit length $\quad=\frac{1.45}{50}=0.029 \mathrm{~V} / \mathrm{cm}$
Voltage drop across 75 cm length $=0.029 \times 75=2.175 \mathrm{~V}$

$$
\text { Current through resistor }=\frac{2.175}{0.1}=21.75 \mathrm{~A}
$$

27. Ans: (a)

Sol: Given that

$$
\begin{aligned}
\mathrm{f}=50 \mathrm{~Hz}, & \mathrm{~N}_{2}=500 \\
\mathrm{I}_{\mathrm{S}}=5 \mathrm{~A}, & \mathrm{R}=1 \Omega
\end{aligned}
$$

Magnatizing turns $=200 \mathrm{AT}$

$$
\begin{aligned}
\text { Bar primary } & =1 \text { turn } \\
\mathrm{I}_{0} & =200 \times 1 \\
\mathrm{I}_{0} & =200 \mathrm{~A}
\end{aligned}
$$

About α, δ nothing is mentioned neglect

$$
\begin{aligned}
& \text { Phase angle error } \begin{aligned}
\theta & =\frac{\mathrm{I}_{0} \cos (\alpha+\delta)}{\mathrm{nI}_{\mathrm{s}}} \text { red } \\
\theta & =\frac{\mathrm{I}_{0}}{\mathrm{nI}_{\mathrm{s}}} \times \frac{180}{\pi} \text { degrees } \\
\theta & =\frac{200 \times 180}{500 \times \pi \times 5}=4.6 \text { degrees }
\end{aligned}
\end{aligned}
$$

28. Ans: b

Sol: The flux in the CT core is

$$
\begin{aligned}
& \mathrm{emf} \mathrm{E}_{2}=4.44 \times \mathrm{f} \times \phi_{\mathrm{m}} \times \mathrm{N}_{2} \\
& \qquad \phi_{\mathrm{m}}=\frac{\mathrm{E}_{2}}{4.44 \times \mathrm{f} \times \mathrm{N}_{2}}=\frac{5 \times 1}{4.44 \times 50 \times 500}=45 \mu \mathrm{~Wb}
\end{aligned}
$$

29. Ans: (a)

Sol: Under balanced condition

$$
\begin{aligned}
I_{W} & =\frac{E}{R_{h}+R_{\text {slide }}} \\
& =\frac{3.2}{200+200+2800}=1 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

Then,

$$
E_{x}=I_{\omega} \times 200=2 \times 10^{-3} \times 200=200 \mathrm{mV}
$$

30. Ans:(c)

Sol:

$$
\begin{gather*}
\text { Before reversing of } V_{x} \\
I=0.2 \times 10^{-3} A \\
-V_{x}-I_{m}-1 \mathrm{v}=0 \\
V_{x}=-\left(0.2 \times 10^{-3} \times R-1\right)- \tag{1}
\end{gather*}
$$

After reversing of V_{x}

$$
\begin{gather*}
\mathrm{I}=3.8 \times 10^{-3} \mathrm{~A} \\
\mathrm{~V}_{\mathrm{x}}=3.8 \times 10^{-3} \times \mathrm{R}-1- \tag{2}
\end{gather*}
$$

Equating (1) \& (2)

$$
-\left[0.2 \times 10^{-3} \mathrm{R}-1\right]=\left[3.8 \times 10^{-3} \times \mathrm{R}-1\right]
$$

$$
\begin{aligned}
\mathrm{R} & =\frac{2}{4 \times 10^{-3}}=500 \Omega \\
\text { From (2) } \quad \mathrm{V}_{\mathrm{x}} & =3.8 \times 10^{-3} \times 500-1 \\
\mathrm{~V}_{\mathrm{x}} & =0.9 \mathrm{~V}
\end{aligned}
$$

31.Ans:(a)

Sol: from the circuit

$$
\mathrm{V}=-\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}} \times \mathrm{V}_{\mathrm{i}}=-\frac{15 \times 10^{3}}{10 \times 10^{3}} \times 1 \mathrm{~V}=-1.5 \mathrm{~V}
$$

32. Ans(a)

Sol:

$$
\begin{gathered}
\quad \begin{array}{c}
\mathrm{E}_{\mathrm{x}} \text { balances at } 10 \mathrm{~m} 18 \mathrm{~cm} \\
\quad \text { i.e } 10.18 \mathrm{~m}=10.18 \Omega \\
\mathrm{E}_{\mathrm{x}}=\mathrm{I}_{\mathrm{w}} \times \text { resistance of slid wire at balance } \\
\mathrm{I}_{\mathrm{w}}=\frac{1.018}{10.18}=0.1 \mathrm{~A} \\
\mathrm{I}_{\mathrm{W}}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{SC}}+11} \\
\mathrm{R}_{\mathrm{se}}+11=\frac{2}{0.1}
\end{array}
\end{gathered}
$$

33. Ans(d)

$$
\mathrm{I}_{\mathrm{g}}=10 \mu \mathrm{~A}, \mathrm{Eu}=?
$$

Write KVL for loop 1

$$
-1.6+(100+500) \mathrm{I}_{\mathrm{w}}+1000\left(\mathrm{I}_{\mathrm{w}}+\mathrm{I}_{\mathrm{g}}\right)=0
$$

$$
1600 \mathrm{I}_{\mathrm{w}}+1000 \mathrm{I}_{\mathrm{g}}=1.6
$$

$$
\mathrm{I}_{\mathrm{w}}=\frac{1.6-10 \times 10^{-3}}{1600}=9.9375 \times 10^{-4} \mathrm{~A} .
$$

Write KVL for loop 2

$-\mathrm{Eu}+100 \times 10 \times 10^{-6}+1000\left(10 \times 10^{-6}+9.9375 \times 10^{-4}\right)=0$

$$
\mathrm{Eu}=1.00475
$$

34. Ans: (b)

Sol: Given data $I_{w}=10 \mathrm{~mA}, \quad \mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}=100 \Omega$

The unknown resistance ' X ' can be obtained as

$$
\begin{aligned}
& I_{w}=\frac{3}{X+250} \\
& X=\frac{3}{10 \times 10^{-3}}-250=50 \Omega
\end{aligned}
$$

The sliding contact differentiates the unknown resistance into 20Ω and 30Ω. Now find out true E_{x} value

$$
\mathrm{E}_{\mathrm{x}}=\text { dropacross } 20 \Omega \text { resistor }=20 \times 10 \times 10^{-3}=0.2 \mathrm{~V}
$$

But the galvanometer can only detect current greater than $10 \mu \mathrm{~A}$.
Now the error is nothing but voltage drop across $\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}$.

$$
\begin{aligned}
& \qquad \mathrm{I}_{\mathrm{g}}\left(\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{1}\right)=10 \times 10^{-6}(100)=1 \mathrm{mV} \\
& \text { percentageerror }=\frac{1 \times 10^{-3}}{0.2} \times 100=0.5
\end{aligned}
$$

37. Ans: (a)

Sol :
Sol: Nominal ratio $K_{n}=\frac{200}{1}=200$
Since no turns compensation nominal ratio $=$ turns ratio (n)

$$
\begin{aligned}
\text { Actual ratio } \mathrm{R} & =\frac{\mathrm{I}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{s}}}=\frac{100}{0.495}=202.02 \\
\text { Ratio error } & =\frac{\mathrm{K}_{\mathrm{n}}-\mathrm{R}}{\mathrm{R}} \times 100 \\
& =\frac{200-202.02}{202.02} \times 100 \\
& =-0.99 \% \\
& \simeq-1.0 \%
\end{aligned}
$$

